Local bandwidth selectors for deconvolution kernel density estimation

نویسندگان

  • Achilleas Achilleos
  • Aurore Delaigle
چکیده

We consider kernel density estimation when the observations are contaminated by measurement errors. It is well known that the success of kernel estimators depends heavily on the choice of a smoothing parameter called the bandwidth. A number of data-driven bandwidth selectors exist in the literature, but they are all global. Such techniques are appropriate when the density is relatively simple, but local bandwidth selectors can be more attractive in more complex settings. We suggest several data-driven local bandwidth selectors and illustrate via simulations the significant improvement they can bring over a global bandwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical bandwidth selection in deconvolution kernel density estimation

Kernel estimation of a density based on contaminated data is considered and the important issue of how to choose the bandwidth parameter in practice is discussed. Some plug-in (PI) type of bandwidth selectors, which are based on non-parametric estimation of an approximation of the mean integrated squared error, are proposed. The selectors are a re4nement of the simple normal reference bandwidth...

متن کامل

Fourier Series Based Bandwidth Selectors for Kernel Density Estimation

A class of Fourier series based plug-in bandwidth selectors for kernel density estimation is considered in this paper. The proposed data-dependent bandwidths are simple to obtain, easy to interpret and consistent for a wide class of compact supported distributions. Some of them present good finite sample comparative performances against the classical two-stage direct plug-in method or the least...

متن کامل

A variable bandwidth selector in multivariate kernel density estimation

Based on a random sample of size n from an unknown d-dimensional density f , the problem of selecting the variable (or adaptive) bandwidth in kernel estimation of f is investigated. The common strategy is to express the variable bandwidth at each observation as the product of a local bandwidth factor and a global smoothing parameter. For selecting the local bandwidth factor a method based on cl...

متن کامل

Statistica Sinica 6(1996), 129-145 A COMPARATIVE REVIEW OF BANDWIDTH SELECTION FOR KERNEL DENSITY ESTIMATION

In kernel density estimation, a crucial step is to select a proper smoothing parameter (bandwidth). The bandwidth considerably a ects the appearance of the density estimate. The most studied procedure is cross-validation. It is well known that cross-validation is subject to large sample variation and often selects smaller bandwidth. Recently, some procedures have been proposed to remedy the di ...

متن کامل

Full bandwidth matrix selectors for gradient kernel density estimate

The most important factor in multivariate kernel density estimation is a choice of a bandwidth matrix. This choice is particularly important, because of its role in controlling both the amount and the direction of multivariate smoothing. Considerable attention has been paid to constrained parameterization of the bandwidth matrix such as a diagonal matrix or a pre-transformation of the data. A g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012